

Mark Scheme (Results)

January 2019

Pearson Edexcel International Advanced Level In Chemistry (WCH06) Paper 01 Chemistry Laboratory Skills II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019 Publications Code WCH06_01_1901_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Acceptable Answers		Reject	Mark
1(a)(i)	Test 1 Cation: Cr^{3+} ALLOW $[Cr(H_2O)_6]^{3+}$	(1)	Cr	(2)
	IGNORE State symbols, even if incorrect square brackets Chromium(III) ions	Missing		
	Test 2: White precipitate / ppt / ppte / solid IGNORE Cloudy	(1)	Off-white / pale yellow / cream	

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	[Cr(OH) ₆] ³⁻		(1)
	ALLOW $[Cr(OH)_4(H_2O)_2]^- / [Cr(OH)_4]^- / CrO_2^-$ IGNORE Name State symbol, even if incorrect Missing square brackets OH^-		

Question Number	Acceptable Answers	Reject	Mark
1(a)(iii)	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$		(1)
	State symbols required		
	ALLOW Multiples		
	IGNORE Other equations as working		

Question Number	Acceptable Answers		Reject	Mark
1(b)(i)	Test 3 Observation:		Fizzing for M1	(3)
	White precipitate / ppt / ppte / solid	(1)	only	
	(Precipitate dissolves in excess to form a) colourless solution	(1)		
	IGNORE Just 'precipitate dissolves' / clear			
	Test 4 Anion: Sulfate(VI) / SO ₄ ²⁻		sulfite / sulfate(IV) / SO ₃ ^{2–}	
	ALLOW			
	sulfate	(1)		

1(b)(ii)(Formation of white precipitate) $Zn^{2+} + 2OH^- \rightarrow Zn(OH)_2$ OR $[Zn(H_2O)_6]^{2+} + 2OH^- \rightarrow Zn(OH)_2 + 6H_2O$ OR $[Zn(H_2O)_6]^{2+} + 2OH^- \rightarrow Zn(OH)_2(H_2O)_4 + 2H_2O$ (2)ALLOW Other balanced equations for the reaction of zinc ions to form either of the precipitates shown (1)(1)(Dissolving precipitate) Equation must start from a precipitate $Zn(OH)_2 + 2OH^- \rightarrow [Zn(OH)_4]^{2-}$ OR $Zn(OH)_2 + 4OH^- \rightarrow [Zn(OH)_4]^{2-} + 4H_2O$ OR $Zn(OH)_2(H_2O)_4 + 2OH^- \rightarrow [Zn(OH)_4]^{2-} + 4H_2O$ OR	Question Number	Acceptable Answers	Reject	Mark
ON Zn(OH) ₂ (H ₂ O) ₄ + 2OH ⁻ → [Zn(OH) ₄ (H ₂ O) ₂] ²⁻ + 2H ₂ O OR Zn(OH) ₂ (H ₂ O) ₄ + 4OH ⁻ → [Zn(OH) ₆] ⁴⁻ + 4H ₂ OALLOW 		$Zn^{2^+} + 2OH^- \rightarrow Zn(OH)_2$ OR $[Zn(H_2O)_6]^{2^+} + 2OH^- \rightarrow Zn(OH)_2 + 6H_2O$ OR $[Zn(H_2O)_6]^{2^+} + 2OH^- \rightarrow Zn(OH)_2(H_2O)_4 + 2H_2O$ ALLOW Other balanced equations for the reaction of zinc ions to form either of the precipitates shown (1) (Dissolving precipitate) Equation must start from a precipitate Zn(OH)_2 + 2OH^- \rightarrow [Zn(OH)_4]^{2^-} OR Zn(OH)_2 + 4OH^- \rightarrow [Zn(OH)_6]^{4^-} OR Zn(OH)_2(H_2O)_4 + 2OH^- \rightarrow [Zn(OH)_4]^{2^-} + 4H_2O OR Zn(OH)_2(H_2O)_4 + 2OH^- \rightarrow [Zn(OH)_4(H_2O)_2]^{2^-} + 2H_2O OR Zn(OH)_2(H_2O)_4 + 4OH^- \rightarrow [Zn(OH)_6]^{4^-} + 4H_2O ALLOW Other balanced equations for the reaction of a precipitate to form any of the complex ions shown Equation for the formation of ZnO_2^{2^-} e.g. Zn(OH)_2 + 2OH^- → ZnO_2^{2^-} + 2H_2O (1) IGNORE Missing square brackets		(2)

(Total for Question 1 = 9 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)	(Gas) hydrogen chloride / HCl / HCl(g) ALLOW HCl(aq) / hydrochloric acid (1) (Group) (–)OH / (–)O–H / hydroxy(l) OR alcohol or carboxylic acid Both needed for the mark (1)	OH [−] / hydroxide Just 'alcohol' or just 'carboxylic acid'	(2)

Question Number	Acceptable Answers	Reject	Mark
2(b)	Primary or secondary alcohol Both needed for the mark ALLOW 1° or 2° alcohol Not tertiary alcohol IGNORE Just 'alcohol' / not a carboxylic acid		(1)

Question Number	Acceptable Answers		Reject	Mark
2(c)	H H	(1)		(2)
	IGNORE Name, even if incorrect			
Question Number	Acceptable Answers		Reject	Mark
2(d)	(Gas) carbon dioxide / CO ₂	(1)		(2)
	(Functional group) Carboxylic acid / COOH / CO ₂ H /carboxyl / carboxylic	(1)	Just acid Just carbonyl /C=O COO ⁻ / COO	

Question Number	Acceptable Answers	Reject	Mark
2(e)	H – , , , , , , , , , , , , , , , , , ,		(1)

Question Number	Acceptable Answers	Reject	Mark
2(f)	$H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H$		(1)
	propan-1-ol		

(Total for Question 2 = 9 marks)

Question Number	Acceptable Answers		Reject	Mark
3(a)	First mark White /off-white / beige / buff / pale brown / light brown and precipitate / ppte / ppt / solid Note: Colour and state are needed for the mark IGNORE Colourless or pale pink solution Gelatinous	(1)	Cream ppt Pink ppt Brown ppt Fizzing / bubbles / effervescence	(2)
	Second mark Darkens / turns brown (on standing) ALLOW Turns black ((1)	Reference to precipitate dissolving	

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	$E^{\circ}_{cell} = (0.56 - 2.26 =) -1.7(0)$ (V)(1)(Reaction is not thermodynamically feasible as) E°_{cel} is (large and) negative / <0		(2)

Question	Acceptable Answers	Reject	Mark
Number			
3(b)(ii)	First mark (Higher concentration of OH ⁻ ions) Reduces the <i>E</i> [⊕] value / <i>E</i> [⊕] becomes less positive / shifts the equilibrium to the left and linked to second equation / reference to equation with OH ⁻		(2)
	ALLOW Becomes 'more negative' for 'less positive' (1) Second mark So E ^e _{cell} becomes positive (and the reaction is feasible) OR		
	E°_{cell} (of original reaction)= -0.03 (V) ALLOW E°_{cell} (of original reaction) is slightly negative (1) IGNORE Reference to non-standard conditions Activation energy Just ' E°_{cell} is positive (so reaction is feasible)'		

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	(Indicator) starch (solution) (1)		(2)
	(Colour change from) blue or black or blue-black and (to) colourless	Purple / green	
	ALLOW Any shade of blue e.g. deep blue (1) IGNORE Clear		

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	Correct answer, with or without working, scores (4)		(4)
	Mol S ₂ O ₃ ²⁻ used = $\frac{16.2 \times 0.0100}{1000}$ = 0.000162 / 1.62 × 10 ⁻⁴ (1)		
	(Mol I ₂ = $\frac{1.62 \times 10^{-4}}{2}$ = 0.000081 / 8.1 × 10 ⁻⁵)		
	Mol Mn(II)/Mn(III) = $(8.1 \times 10^{-5} \times 2)$ = 0.000162 / 1.62 × 10 ⁻⁴		
	TE on mol $S_2O_3^{2-} / I_2$ (1)		
	Mol $O_2 = 0.000162$ 4 = 4.05 x 10 ⁻⁵ / 0.0000405 TE on mol Mn(II)/Mn(III) (1)		
	Volume $O_2 = 4.05 \times 10^{-5} \times 24\ 000$ = 0.972 / 0.97 / 1(cm ³) TE on mol O_2		
	ALLOW $9.72 \times 10^{-4} \mathrm{dm^3}$ (1)		

(Total for Question 3 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
4(a)	Benzene is carcinogenic / causes cancer	Explosive	(1)
	ALLOW Benzene is toxic / poisonous / causes cells to mutate		
	IGNORE References to flammability / volatility / corrosive / dangerous / hazardous / reactivity / harmful		

Question Number	Acceptable Answers	Reject	Mark
4(b)	Reactions (with concentrated sulfuric acid) are (very)exothermic / produce (a lot of) heat ALLOW To prevent hydrolysis of the ester IGNORE Vigorous / violent / to prevent decomposition / to prevent further nitration / flammable / prevent evaporation	Explosive	(1)

Question Number	Acceptable Answers	Reject	Mark
4(c)	Image: space state stat	Normal filter funnel with tap in stem	(3)
	Note – thermometer and tap funnel in wrong necks loses second mark only		
	Third mark – ice-bathFlask in container of ice or ice-water mixture(1)		

Question Number	Acceptable Answers		Reject	Mark
4(d)	First mark Structure of any methyl dinitrobenzoate		Nitration of methyl group	(2)
	ALLOW Skeletal / displayed formula for side chain ((1)		
	IGNORE Connectivity of NO ₂ groups			
	Second mark – conditional on M1 Name of the methyl dinitrobenzoate drawn e.g.			
	O ₂ N C C C H ₃			
	methyl 3,5-dinitrobenzoate			
	ALLOW 3,5-dinitromethylbenzoate ((1)	Just methyldinitro benzoate (dinitromethyl	
	IGNORE Extra / missing hyphen from name Missing comma		/ dinitromethyl benzoate	

Question Number	Acceptable Answers	Reject	Mark
4(e)	(Filtration under reduced pressure is) Fast(er) / filtration speeds up OR The methyl 3-nitrobenzoate / crystals / product is drier	Reacts faster	(1)
	ALLOW Filtrate / soluble impurities / solvent is removed and more completely / efficiently		
	ALLOW Dries the methyl 3-nitrobenzoate / crystals / product		
	IGNORE Reference to yield		

Question Number	Acceptable Answers	Reject	Mark
4(f)(i)	First mark It should be the minimum amount of hot methanol / solvent ALLOW a description of minimum e.g. just enough to dissolve the solid dissolve the solid (1) Second mark To minimise / reduce the amount of solid left in solution (when it crystallises) OR To ensure that (some) crystals / solid form on cooling OR If there is too much solvent, crystals will not form OR So the solution is saturated / concentrated IGNORE Just 'to increase the yield'	Incorrect named solvent e.g. water / ethanol	(2)

Question	Acceptable Answers	Reject	Mark
Number			
4(f)(ii)	First mark	Use of a tap	(2)
	Filter (the hot mixture) (1)	funnel or	
		separating	
	IGNORE	funnel	
	Stir / use of fluted filter paper		
	Second mark - Conditional on filter		
	To remove insoluble / undissolved / solid impurities		
	ALLOW		
	Use a pre-heated funnel to prevent crystals forming		
	(in the stem of the funnel) (1)		

Question	Acceptable Answers	Reject	Mark
Number 4(f)(iii)	First mark	(Anhydrous)	(2)
	The methyl 3-nitrobenzoate would need to be	sodium sulfate	
	separated from the (anhydrous) sodium sulfate	reacts with the crystals	
	ALLOW		
	(Anhydrous) sodium sulfate will mix with the crystals		
	OR		
	Both are in the solid state OR		
	(Anhydrous) sodium sulfate only removes water (and not methanol)		
	OR		
	(Anhydrous) sodium sulfate would not remove (excess) methanol		
	OR		
	(Anhydrous) sodium sulfate is used to dry liquids (1)		
	Second mark		
	Dry the crystals on filter paper / on tissue paper / use of an oven / leave to dry / place in a desiccator (with anhydrous sodium sulfate) / leave in an unstoppered boiling tube (for the methanol to evaporate)	Hot oven / Use of any other drying agent e.g. CaCl ₂	
	ALLOW		
	Other suitable methods of drying crystals (1)		
	IGNORE		
	Reference to removing water		

Acceptable Answers	Reject	Mark
		(3)
Second mark EITHER Theoretical mass methyl 3-nitrobenzoate $= 0.024044 \times 181$ = 4.3520 (g) TE on moles of methyl 3-nitrobenzoate OR Moles methyl 3-nitrobenzoate produced $= 2.28 = 0.012597 / 1.2597 \times 10^{-2}$ (1)	
181 Third mark EITHER % yield = $2.28 \times 100 = 52.390 / 52.4 / 52(\%)$ 4.35199 TE on theoretical mass benzoic acid provided it is less than 100% OR % yield = $0.012597 \times 100 = 52.390 / 52.4 / 52 (\%)$ 0.024044 TE on moles methyl 3-nitrobenzoate provided it is less than 100% (1)		
	Correct answer, with or without working, scores (3) First mark Mass of methyl benzoate $= 3.0 \times 1.09 = 3.27$ (g) and moles of methyl benzoate $= 3.27 = 0.024044 / 2.4044 \times 10^{-2}$ (1) 136 Second mark EITHER Theoretical mass methyl 3-nitrobenzoate $= 0.024044 \times 181$ = 4.3520 (g) TE on moles of methyl 3-nitrobenzoate OR Moles methyl 3-nitrobenzoate produced $= 2.28 = 0.012597 / 1.2597 \times 10^{-2}$ (1 Third mark EITHER % yield $= 2.28 \times 100 = 52.390 / 52.4 / 52(%)$ 4.35199 TE on theoretical mass benzoic acid provided it is less than 100% OR % yield $= 0.012597 \times 100 = 52.390 / 52.4 / 52 (%)$ 0.024044 TE on moles methyl 3-nitrobenzoate provided it is less	Correct answer, with or without working, scores (3) First mark Mass of methyl benzoate $= 3.0 \times 1.09 = 3.27$ (g) and moles of methyl benzoate $= 3.27 = 0.024044 / 2.4044 \times 10^{-2}$ (1) 136 Second mark EITHER Theoretical mass methyl 3-nitrobenzoate $= 0.024044 \times 181$ = 4.3520 (g) TE on moles of methyl 3-nitrobenzoate OR Moles methyl 3-nitrobenzoate produced $= 2.28 = 0.012597 / 1.2597 \times 10^{-2}$ (1) 181 Third mark EITHER % yield = 2.28 x 100 = 52.390 / 52.4 / 52(%) 4.35199 TE on theoretical mass benzoic acid provided it is less than 100% OR % yield $= 0.012597 \times 100 = 52.390 / 52.4 / 52 (%)$ 0.024044 TE on moles methyl 3-nitrobenzoate provided it is less than 100% (1)

Question Number	Acceptable Answers	Reject	Mark
4(h)	Technique Heat the water gently OR Stir the water (to distribute the heat evenly) (1)	Heat to any temperature above 73°C	(3)
	Melting startsNote the temperature at whichmethyl 3-nitrobenzoate / crystals / solid startsto melt(1)Melting endsNote the temperature at whichmethyl 3-nitrobenzoate / crystals / solid hascompletely melted(1)	Penalise dissolve for melts once only in M2 and M3	

(Total for Question 4 = 20 marks)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom